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Chaotic advection by laminar flow in a twisted pipe 
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The appearance of chaotic particle trajectories in steady, laminar, incompressible 
flow through a twisted pipe of circular cross-section is demonstrated using standard 
dynamical systems diagnostics and a model flow based on Dean’s perturbation 
solutions. A study is performed to determine the parameters that  control fluid 
stirring in this mixing device that has no moving parts. Insight into the chaotic 
dynamics are provided by a simple one-dimensional map of the pipe boundary onto 
itself. The results of numerical experiments illustrating the stretching of material 
lines, stirring of blobs of material, and the three-dimensional trajectories of fluid 
particles are presented. Finally, enhanced longitudinal particle dispersal due to the 
coupling between chaos in the transverse direction and the non-uniform longitudinal 
transport of particles is shown. 

1. Introduction 
The phenomenon that a simple Eulerian velocity field may generate a chaotic 

response in the distribution of a Lagrangian marker, previously termed chaotic 
advection (Aref 1984), has been verified in several flows ranging from idealized models 
(thermal convection in a periodic box: Arter 1983; ‘blinking vortex ’ flow: Aref 1984; 
Khakhar, Rising & Ottino 1986 ; Beltrami flow solutions of the three-dimensional 
Euler equation, e.g. ABC flows: H6non 1966; Dombre et al. 1986; ‘pulsed source/sink’ 
flow : Jones & Aref 1988) to more realistic laboratory and observational situations 
(‘driven cavity/extruder’ flow: Chien, Rising & Ottino 1986; ‘journal bearing’ flow: 
Aref & Balachandar 1986; Chaiken et al. 1986, 1987; tidal channel oceanography: 
Zimmerman 1986). I n  spite of the solid theoretical foundation of the phenomenon 
and the obvious general applicability to the stirring of fluids, the subject of chaotic 
advection is still in need of specific flow examples where this unconventional mixture 
of fluid kinematics and the theory of dynamical systems can be elucidated and 
explored. The use of simple models in the early papers on the subject may suggest 
a limited range of applicability of the concepts, an inference that we certainly wish 
to dispel. I n  particular, efficient stirring by steady, laminar flow in three dimensions 
is an important topic that covers a wide spectrum of applications and raises new 
issues a t  a fundamental level in the theory of dynamical systems (see Feingold, 
Kadanoff & Piro 1988). 

In this paper we suggest how chaotic advection of a passive scalar in steady 
laminar flow through a sequence of pipe bends leads to  enhanced transverse and 

t Also affiliated to Scripps Institution of Oceanography. 
1 Also affiliated to Institute of Geophysics and Planetary Physics, and San Diego Supercomputer 

Center. 
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longitudinal stirring. This type of flow is of importance to applications such as heat 
and mass transfer in piping systems (Kalb & Seader 1972; Prusa & Yao 1982), and 
to aspects of bioengineering and physiological fluid mechanics (Weissman & Mockros 
1968; Chang & Tarbell 1985). We perform a parametric study of a certain model flow 
(discussed in $2)  to explore the factors governing stirring efficiency in a pipe 
consisting of a sequence of bends. 

It has been known since the pioneering work of Arnol’d and HBnon (1966) that 
steady three-dimensional flows may give rise to chaotic streamlines. Indeed, the 
Lagrangian equations for the passive advection of particles in three dimensions : 

i = u(x,y,z); y = v(x,y,z); i = w(x,y,z), ( l a ,  b,  c )  

where the dot denotes a time derivative, are rich enough in general to yield chaotic 
solutions. A common misconception is that the coincident streamlines and pathlines 
in such steady flows are closed curves or are confined to smooth surfaces. The 
numerical study by HBnon (1966), subsequently amplified by Dombre et al. (1986), 
using a Beltrami flow solution of the three-dimensional Euler equations showed that 
this is not a t  all the case. Indeed, only if o x V is non-vanishing everywhere, will the 
coincident pathlines and streamlines be confined to one of the family of Lamb 
surfaces (Lamb 1878; Serrin 1959) perpendicular to this vector. 

The case of two-dimensional unsteady flow is formally even simpler (Aref 1984). In  
the case of an incompressible fluid we have the equations 

These are in the form of Hamilton’s canonical equations for a system with one degree 
of freedom. The conjugate variables are x and y, the coordinates of the advected 
marker particle. The Hamiltonian is the stream function $. All these observations 
are independent of the momentum equation governing the fluid motion. Thus, 
Hamiltonian mechanics, and the associated possibility of chaotic motion when @ is 
time dependent, pertains even to the kinematics of a viscous fluid. 

In this paper we consider advection by steady, three-dimensional flow through a 
sequence of pipe bends of circular cross-section. We shall see that although formally 
a problem of the type described in (l) ,  much of the insight from investigations of 
time-dependent flows of the type in (2) pertains to fluid advection in this case. For 
clarity we shall use the term curved to denote a section of a pipe that has a constant 
radius of curvature and lies in a plane. A curved pipe is part of a torus. A twisted pipe 
will denote a pipe that consists of curved pipe segments that are not all in the same 
plane. It is well known that in a curved pipe segment fluid inertia leads to the 
formation of two longitudinal vortices of opposite sign (see the review by Berger, 
Talbot & Yao (1983) where many further references may be found). The flow 
geometry that we envision is a twisted pipe composed of a series of segments curved 
through 180”. The twist arises because the plane of curvature of each subsequent 
curved pipe segment forms an angle relative to the preceding segment. In the 
simplest case we have just two segments with an angle between the second and the 
first, and this ‘basic cell ’ is then repeated to make up the entire twisted pipe (the two- 
segment basic cell is shown in figure 1). We may also consider twisted pipes with more 
complicated basic cells. We refer to the twist angle between the two curved pipe 
segments in our basic cell as the pitch angle of the twisted pipe and denote it x. We 
utilize the following sign convention in defining the pitch angle. When following the 
pipe in the direction of the flow, rotation of the pipe segments in the counter- 
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clockwise sense increases x. Given the diameter and radius of curvature of the curved 
pipe segments, the geometry of the pipe is fully prescribed when the pitch angle is 
given. If the pitch angle x = O”,  the twisted pipe degenerates to  a torus (and one 
‘basic cell’ suffices). If the pitch angle x = 180°, the basic cell of the twisted pipe 
becomes S-shaped. In  both these cases the twisted pipe is confined to a plane. 

The most interesting cases arise when the pipe geometry, and thus the sequence of 
secondary flow patterns to which an advected particle is subjected, is more 
complicated. In  each segment, the transverse flow consists of a pair of counter- 
rotating vortices. For a general pitch angle the symmetry planes of the secondary 
flows in successive bends will not coincide, and a particle being transported along the 
pipe will experience a sequence of transverse flows that may be heuristically 
described as a ‘blinking vortex dipole ’ flow. From earlier experiences with unsteady 
two-dimensional model flows (Aref 1984 ; Khakhar, Rising & Ottino 1986) it appears 
inevitable that this will create chaotic particle motion in the cross-stream direction. 
This will be illustrated in detail later. 

The organization of the remainder of the paper is as follows: In  $2 we state the 
mathematical model of the flow field used in our numerical experiments on 
advection. This is a perturbation series approximation to the real flow. We discuss 
various issues related to the accuracy and physical realism of our representation of 
the flow. In $ 3  we report numerical experiments on advection using the model 
developed in $2. In  the first part of $ 3  we compute and consider the intersections 
spaced by a basic cell of individual particle tracks. We conduct a parametric study 
in which the flow rate and the pitch angle are varied. In  this way a ‘global ’ view of 
the role of chaotic advection in cross-stream transport is obtained. Then we 
investigate properties of a mapping of the pipe contour onto itself, ‘induced ’ by the 
flow in the twisted pipe. Fixed points of this mapping on the pipe wall appear to have 
an important controlling influence on the cross-stream chaos within the pipe. We also 
compute the associated manifolds. Next, we study the stretching and stirring of 
‘blobs’ and lines of particles. Results of this type will be important for comparison 
with experiments. The deformation of material lines by the full three-dimensional 
flow is related to the manifold structure of the two-dimensional mapping of the pipe 
cross-section onto itself explored earlier in the section plots, but not as simply as one 
might think owing to the role of the longitudinal flow. In  the final part of $3 we 
explore this three-dimensional structure, and we present results on the coupling 
between cross-stream advection and the longitudinal dispersion of particles. These 
results suggest links to recent work on ‘chaotic scattering’ and a purely deterministic 
counterpart to Taylor’s (1953) notion of shear dispersion. The latter topic is pursued 
in greater detail in an independent paper by Jones & Young (1989). Finally, $4 
provides a discussion of our results and comments on extensions. 

Previews of these results have been given on numerous occasions : see, for example, 
Aref & Jones (1987) and Jones, Thomas & Aref (1987). For popular introductions to 
the problem area of chaotic advection the reader may wish to consult Aref, Jones & 
Thomas (1988) or Ottino (1989). 

2. Governing equations 
Derivation of an approximate velocity field for flow in a curved pipe follows the 

seminal analysis by Dean (1927, 1928). Here we briefly outline Dean’s development 
in order to establish our notation (see Berger et al. 1983 for additional material). 
The equations of motion are written in a toroidal coordinate system illustrated in 
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l - - R l Q l  

FIGURE 1 .  Perspective drawings of the periodic 'basic cell ' used in this study composed of two 180" 
curved pipe segments with constant radius of curvature. The transverse coordinates I and y and 
the angle B used to describe the flow in a curved pipe segment are indicated. The basic geometry 
is given by the pipe radius a, the radius of curvature of a bend R,  and the pitch angle x. 

figure 1.  The flow is assumed steady, incompressible, and all velocity components are 
taken to be independent of 0. Polar coordinates r ,  q5 are introduced in the transverse 
(2, y)-plane according to x = r sin q5, y = r cos q5. The main perturbation assumpt,ion is 
that the radius of the pipe, a ,  is small relative to its radius of curvature, R. Scaling 
all lengths by a ,  the axial velocity w by the average axial velocity W ,  and the stream 
function $ by the kinematic viscosity v ,  yields the following non-dimensional 
equations for w and the secondary flow stream function ?,k: 

Here C is a non-dimensional version of the overall pressure gradient driving the flow 

D is a non-dimensional parameter known as the Dean number given by 

and 
w a  

Re = - 
V 

is the usual Reynolds number. The relationship between D and Re is D = Re2(a/R).  
The perturbation solution arises by expanding w and @, see (Z), in a power series 

in D. At lowest order we recover the usual Poiseuille flow solution for a straight pipe. 
The first-order equations give us the flow that we shall use for advecting particles in 
a single curved segment. If we introduce (x, y)-coordinates in the transverse plane, 



Chaotic advection by laminar jlow in a twisted pipe 339 

with the x-axis along the symmetry axis of the secondary flow, the equations of 
motion for a particle passively advected by the flow are 

a XYh’(r), 8 = IP(1-r’). (5a ,  6, c )  x . a  = ---{h(r)+-h’(r)}, Y2 t j  = --- 
1152 r 1152 r 

Here r2 = x2+y2, and (5c)  is simply a Poiseuille profile for the axial flow. The 
prefactors a and B in (5a ,  b) are related to  C, D and Re, equation (4), via a = DC2,  
p = DC/Re. The function h(r) is given by 

h(r)  = : ( 4 - r ” ( 1 - ~ ~ ) ~ ,  (6) 

and h’(r) is its derivative with respect to r .  

changed from time t to angle 8 by simply dividing (5a ,  b )  by (5c) .  This yields 
Since the flow is steady, ( 5 )  are autonomous and the independent variable can be 

- dx = ~ ( 4 - 5 x 2 - 2 3 y P + x 4 + 8 x 2 y 2 + 7 y 4 ) ,  - dy = -xy(3-x2-y2), Y (7a, b) d8 1152 d8 192 

where y = a/P. Equation (7) defines the mapping of fluid particles from one cross- 
sectional plane 8 = constant to another due to the flow in the curved pipe. Higher- 
order approximations are available but we shall be content with this one for our work 
here (see additional discussion below). 

It is important to  distinguish the actual time-evolving advection described by (5 )  
from the ‘induced’ mapping of the cross-section given by (7). Equation ( 5 )  is 
divergence-free in the sense that ak aG -+- = 0, 

ax ay 

which simply reflects the incompressibility of the flow. The system defined by (7), on 
the other hand, does not share this property. Indeed, if one calculates 

it is seen to be non-zero. Hence, (7) leads to a mapping of the cross-section that is 
not area-preserving. This is not very important, however, because we may introduce a 
rescaled radial coordinate Iz  given by 

R(r)  = r(i  - ir2)+,  (9) 

and in the (R,$)-coordinates the mapping (7) is area-preserving. An outline of the 
calculation leading to (9) is given in the Appendix. 

Of more significance is the difference in physical interpretation of ( 5 )  and (7). Since 
the time has been scaled out, (7)  does not contain the important information that 
fluid particles at the pipe wall make no progress along the pipe owing to the no-slip 
boundary condition. Indeed, according to (7) points on the pipe boundary slip along 
it (formally owing to cancellation of the l - r 2  factor between (6) and (5c) .  This 
cancellation must always occur according to boundary-layer theory; see Aref et al. 
1989). Equation (7) may be thought of as a kind o f t  + 00 limit of the flow given by 
(5 ) .  We shall explore the features of the mapping of the invariant pipe boundary onto 
itself in $3.1, and return to additional points regarding the usefulness of diagnostics 
pertaining to the two-dimensional mapping (7) when addressing particle advection in 
the fully three-dimensional flow in the pipe in $3.4. 

The flow of particles in a twisted pipe with a pitch angle x is now represented by 
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a sequence of Dean solutions, augmented by a rotation of the particles through an 
angle -x between successive segments. Letting M represent the mapping between 
successive cross-sections given by (7) and T be a rotation of fluid particles by -x, the 
mapping of the two-segment basic cell in figure 1 has the symbolic representation 
A = TMTM. The mapping A has the following limits. As y e 0  the secondary flow 
vanishes and A becomes a rotation, A = T2. This limit is not of much interest here. 
For x = 0" the mapping is A = M2 and particles are constrained to follow the 
secondary streamlines given by the Dean solution. Finally for x = 180" the mapping 
reduces to the identity. 

In addition to the usual approximations implied by a perturbation solution, our 
method of patching together Dean solutions makes further assumptions about the 
flow. First, we must assume that the flow becomes fully developed as soon as i t  enters 
the curved segment. This, we understand, is achievable experimentally to a good 
approximation when the flow goes from Poiseuille flow in a straight pipe to Dean flow 
in a single curved pipe (Berger et al. 1983). Second, we must assume that as we go 
from one curved segment to the next, the flow readjusts very quickly from one 
secondary flow pattern to another. This assumption is much more dubious, not to say 
incorrect in general. It is found that the vortex system set up in a curved pipe 
segment can be quite persistent (see, for example, Kao 1987). Indeed, it is well known 
that the secondary vortices set up in curved pipe flow can delay transition to 
turbulence (White 1929; Taylor 1929; Lighthill 1970). Finally, we assume that the 
lowest-order Dean solution is adequate in each curved segment, although higher- 
order approximations are available (Dean 1927, 1928; Berger et al. 1983). 

We argue that although our flow model is probably not realistic for the pipe shown 
as figure 1 ,  it can be approximated in the laboratory by inserting segments of straight 
pipe between the curved segments.t A straight pipe segment allows the secondary 
vortices set up in a bend to decay. Hence, the vortices set up in the following bend 
with a different axis of symmetry are decoupled. We argue, further, that the 
introduction of such straight segments in no way invalidates the effects we are 
documenting. The main flow features that are present in our model are in essence 
topological : we require a system of secondary vortices in each curved segment with 
an axis of symmetry that can be prescribed. The main point on which we rely is that 
the symmetry of the secondary flow between one curved segment and the next is an 
independent parameter, i.e. is not determined by the flow itself. We are also content 
to use the lowest-order Dean solution since the accuracy of this solution is governed 
by other parameters, in particular a/R,  that we wish to be independent of the pitch 
angle x for the flow regimes of interest here. The dynamical systems features that we 
rely on to describe the transition to chaos in the transverse motion are generic to 
periodically forced, near-integrable Hamiltonian systems with one degree of freedom. 
Hence, the accuracy of description of the spatial structure of the transverse flow 
should not be a major issue. We are confident that the general qualitative trends 
should be reproducible in a pipe flow experiment in the appropriate regimes. 

We may add that we suspect advection by the 'real flow' set up in a pipe made up 
of cells such as the one shown in figure 1 to be chaotic, but we may not capture even 
a qualitatively correct picture of this using the present model. We expect that our 
model results in this paper are more likely to be valid for real flows at small values 
of the pitch angle x than as x approaches 180". The reason is easy to see. For 

t This is the approach adopted in the one experimental set-up of which we are aware due to 
Professor C. D. Andereck at Ohio State University. 
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x = 180" the model now leads to every point being returned to its original position 
after each basic cell, since whatever transverse motion the first curved bend 
produces, the second bend will undo. This is only possible if the two secondary flows 
in successive curved segments of a real pipe have been entirely decoupled. 

3. Numerical experiments 
3.1. Transverse stirring : Poincare' sections 

To demonstrate chaotic particle motion in the transverse direction we use the 
standard dynamical systems diagnostic known as the Poincare' section. To construct 
Poincare' sections the positions of particles are tracked as they advect down the pipe 
and their location in the pipe cross-section is plotted after each basic cell. 
Operationally, (7)  is numerically integrated for prescribed initial conditions through 
180" using a fifth-order Fehlberg Runge-Kutta method. The particle positions are 
then rotated through -x, the integration is repeated and the particles are rotated 
again to recover the initial orientation. 

Once the basic cell has been specified the two parameters that govern the 
subsequent flow are y and x. Poincard sections are presented in figures 2 4  
illustrating the influence that these two parameters have on the flow. I n  all Poincare' 
sections the initial conditions are chosen to highlight the structure of the regular 
regions. Each initial condition is iterated through 1000 periodic units. This is, of 
course, not practical for a real pipe and is simply done in order to map out the 
Poincare' section. Effects of the chaotic motion may be seen after only a few bends. 
Figures 2 and 3 show the effect of varying x while y is held constant for two different 
values of y.  For x = 0" the system is integrable and the Poincar6 section reproduces 
the secondary streamlines of Dean flow (figure 2a). As x deviates from 0" for fixed 
y the size of the regular region diminishes. It is interesting to note that the dipole 
vortex structure of the integrable torus case dominates the regular region of the 
sections, with the chaotic paths being confined to a band across the middle of the pipe 
and along the walls. For y = 100 there appears to be a 'most chaotic geometry' at 
about x = 90". Increasing x further approaches the S-pipe in which every point is 
mapped to itself. Thus the Poincar6 section shows increased regularity as x -+ 180". 
Colour versions of figure 2 ( d ,  e )  appear as figure 14(c, e )  (plate 2). 

In  figure 4 the pitch angle x has been fixed at 90" to explore changes in the flow 
due to varying y.  For a given value of x a larger set of initial conditions follow chaotic 
trajectories as y is increased. This dependence is captured in figure 4. Note that figure 
2 ( f )  would fit into the sequence between figure 4 ( a )  and ( b ) .  Parameter choices with 
completely chaotic particle paths, as approximated in figure 4 (c)  and achievable for 
other parameter choices, form the basis for the work in Jones & Young (1989). 

It is clear that these Poincard sections are symmetric about a line at an angle &y 
with respect to the line joining the top and bottom of the pipe. To show this formally 
we note that the mapping M induced by the secondary flow is symmetric with respect 
to reflection in the y-axis: 

where R,(z, y) = ( -2, y). From elementary geometry we have 

M-lR, = R,M, (10) 

T-IR, = RUT. (11) 

(A')-% = SA'. (12) 

Thus, if S = TR,, i.e. reflection in the line rotated ix, and A' = TM, 
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FIQURE 2. Poincar6 sections showing chaotic particle motion in the transverse direction. In all 
panels y = 100 and (a )  x = 0 ;  (a) &; (c) in; (d) in; (4 in; ( f )  ti; (g) iz ;  (h)  (i) $. 

This relation shows that the set of iterates (A')nP of some initial point P coincides 
with the reflection of the set of iterates of SP. Hence, any set of points that is 
invariant under S will produce upon iteration a set that is invariant under S. In 
particular, if P is a periodic point of any period, SP will be a periodic point of the 
same period. 

3.2. Mapping of the pipe boundary onto itself 

An invariance of a different sort arises by considering the circumference of the pipe. 
This circle is an invariant under the mapping A .  Thus the full mapping A induces 
a one-dimensional mapping of the boundary onto itself. We have investigated this 
mapping A, = TM,TM,, where M, is the solution of 
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FIQURE 3. Poincar6 sections for y = 200 and (a )  x = in; ( b )  in; (c) 

- .  
FIQURE 4. Poincar6 sections for x = in and (a)  y = 50; ( b )  150; ( c )  250. 

integrated from 8 = 8, to 8 = 8,+7c, and A, is calculated modulo 27c. Equation (13) 
is derived by setting r = 1 in ( 7 ) t  (or in (A 2)). Note that M, gives the separatrix 
connecting the unstable fixed points on the pipe boundary. The mapping A, is 
integrable and provides some insight into the location of the unstable fixed points 
responsible for the chaotic dynamics of the two-dimensional map A shown in figures 
2 4 .  Solving (13) for q5n+l in terms of $,, yields 

where 

$,+, = 2 tan-'{Ttan (&hn+:7c)}-+7c, 

r = exp ( - 7cy/96). 
(14a) 

(146) 

The mapping A; = TM, is given by 

q5,+1 = 2 tan-l(Ttan ( $ # , + $ r ) } + ~ - ~ 7 c .  (15) 

To be consistent with the sign convention used by Dean we must add the pitch angle 
at each iteration. 

The fixed points of the map A; are found by setting $,+, = $, = q5* and solving 
(15). This gives 

t We recall that the polar coordinates are such that x = r sin $, y = r cos 4, and 4 increases 
clockwise (from 4 = 0 along the positive y-axis, cf. figure 1 ) .  
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x x -  

N o  fixed points on wall 

0 50 loo 
Y 

FIGURE 5. Graph of the dividing curve for the condition (17).  The region beneath the curve 
satisfies the inequality. 

For fixed y or r, (14b), there will be two solutions to (16), i.e. two fixed points on the 
pipe wall, for all pitch angles x for which the argument of the square root in (16) is 
positive, i.e. in view of (146) for which 

nY tan ix < sinh - 
192 

(see figure 5). Since the left-hand side grows beyond all bounds as x + x ,  it follows 
that there cannot be fixed points on the boundary for all values of the pitch angle. 
On the other hand, the full mapping A = TM of the disk onto itself is continuous, 
and therefore must have at least one fixed point by the theorem of Brouwer (cf. 
Courant & Robbins 1941, ch. v, $3.4 for an elementary exposition). In  general t,here 
are fixed points within the disk well before the condition (17) is violated (cf. figure 
2). 

For very large y the parameter r is small, and we may expand the solutions q5* in 
powers of r. We then find that one fixed point (the stable one) is always close to  in, 
the other (unstable fixed point) is close to x-in. Indeed, it, is easy to see in general 
from (16) that  the two values given by this equation satisfy 

9: + $2 = x, (18) 

so that these two fixed points are symmetrically situated with respect to the 
symmetry axis of the Poincark section a t  q4 = ix, as must be the case according to our 
previous general discussion in (12). 

3.3. A global view of the Poincare' sections 

The parametric dependence of the two fixed points on the boundary, and their 
approach as x + n ,  together with the symmetry of the Poincare' section suggests a 
global picture of the emergence of large-scale chaos in this system. The boundary 
fixed points are saddle points as far as the mapping of the disk onto itself is 
concerned. In  the integrable case x = 0, i.e. the torus, their nature and location 
defines the topology of the transverse flow (figure 2a).  As x is increased chaos arises 
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FIGURE 7 .  Stable and unstable manifolds corresponding to the hyperbolic fixed points of ( 7 )  on 
the pipe wall. Parameters are y = 100 and (a) x = in; (6) in; ( c )  in. 

immediately because the saddle connection from one to  the other is disrupted leading 
to a so-called ‘ heteroclinic tangle ’ (see Moser 1973 ; Lichtenberg & Lieberman 1983 
for a description). Figure 6 (a-c)  shows samples of the boundary circle mapping (14) 
for three different values of y and x. The two fixed points are clearly seen as the 
intersections between the graph r$n+l versus I$~ and the line I$n+l = I$n .  The slope at  
the stable (unstable) fixed point is < 1 (> 1). Also shown (figure 6 d - f )  are Poincark 
sections of a thin circular annulus in the boundary region 0.95 < r < 1. The annulus 
has been ‘unfolded’ and plotted in an (r,r$)-diagram. For small x the homoclinic 
oscillations that arise from the disruption of the saddle connection, connecting 
opposite sides of the pipe boundary in the integrable x = 0” case, are an important 
‘global’ feature of the flow. For large x, on the other hand, the fixed points of the 
mapping A, are close together on the pipe boundary, and A, fails to capture much 
of the chaotic behaviour of A. For example, figure 6(c,  f )  shows the fixed points for 
the map A, a t  y = 110 and x = ZIT,  a case that is very similar to figure 2(h) .  At this 
value of y the advection in the heteroclinic tangle of the stable and unstable manifolds 
connected to the fixed points of A, is confined to a thin layer a t  the boundary. Most 
of the chaotic stirring arises from an unstable fixed point close to the centre of the 
pipe. 

Figure 7 provides a different view. Here we show the computed manifolds 
belonging to the unstable fixed points of (7)  on the pipe boundary. Note that because 
we are using the r-coordinate in the radial direction the mapping is not area- 
preserving and the lobes between stable and unstable manifolds do not have the same 
area. For a case such as figure 7 (a ) ,  where the pitch angle is small, the manifolds do 
yield insight into the overall structure of the Poincark section. For cases such as 
figure 7(c), where the pitch angle is much larger, these manifolds are confined to a 
relatively small region of the pipe cross-section. 

3.4. Stretching of material interfaces 

We next illustrate the stretching of a material line. The rate of stretching has been 
shown to be closely related to  the Lyapunov exponent (Khakhar & Ottino 1986), 
which gives the exponential rate of divergence-of neighbouring trajectories, Although 
we have not explicitly calculated Lyapunov exponents for these models flows, the 
chaotic regions of the Poinear6 sections are strong evidence that a positive Lyapunov 
exponent exists. Recall that in (7) the independent variable is 0 rather than t. We 
shall use (7)  to calculate stretching even though it contains no temporal information. 
Figures 8 and 9 show the ‘evolution ’ via (7)  of a line of particles initially situated as 
a diameter of the pipe cross-section with a ax rotation from the horizontal. After a 
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single iteration the points of intersection with the boundary have been swept to the 
vicinity of the unstable fixed point, as must happen owing to the character of the 
mapping A, as displayed in figure S(c).  The line has been significantly stretched and 
shows ‘tendrils’ (Berry et al. 1979), i.e. wiggles due to the oscillations of 
manifolds (see figure 7) associated with the unstable hyperbolic fixed point on the 
boundary. This stretching process continues in subsequent iterations (figure 8). After 
about ten basic cells the structure of the corresponding Poincard section begins to 
appear. 

These distributions of advected particles are not attainable in a real flow starting 
with just one line of marker particles since, as mentioned above, the mapping (7)  that 
we use is not identical to the governing equations of advection, i.e. (5). The particles 
of the initial line do not all arrive at  a given pipe cross-section at  the same time. 
However, if marker particles are continuously fed in along the diagonal used as the 
initial condition in figure 8, then after a sufficiently long time the patterns seen in 
later panels of this figure will appear at a fixed location along the pipe. (Equivalently, 
a long time exposure of the cross-section can be used if only a single line of marker 
particles is introduced.) Indeed, the main difference between the stochastic patterns 
seen in chaotic advection, and the superficially similar patterns that would be seen 
instantaneously in a turbulent pipe flow is that the chaotic advection patterns at a 
given cross-section are completely stationary in time. Thus, with continuous fixed 
feed at  the inlet the patterns in the first column of figure 8 or 9 (panels a ,  e ,  i) will 
be seen after one basic cell, those in the second column (panels b , f , j )  after three basic 
cells, etc. It is instructive to compare figure 8 ( d )  to figure 7 (a)  and figure 2 ( d )  and, 
similarly, to compare 8(h)  to 7 ( b )  and 2 ( f ) .  

3.5. Transient effects 
The stirring of collections of particles in chaotic regions of the flow differs profoundly 
from the stirring of particles trapped within regular regions (cf. figure 10 of Jones & 
Aref 1988). In addition to this obvious distinction there are more subtle transient 
effects on the stirring of particles entirely within chaotic regions. 

One of the most important transient effects on the stirring of particles entirely 
within chaotic regions is the presence of ‘ cantori ’. A cantorus possesses a cantor-set- 
like structure and acts as a leaky barrier to particle transport (Mackay, Meiss & 
Percival 1984). Blobs of particles stirred within regions bounded by cantori can be 
confined for some initial period but eventually some of the particles will escape from 
this region and explore more of the chaotic region. Such escape would, of course, be 
impossible from within a KAM surface. The stirring of a small circle filled with 5000 
particles, and placed within what we believe is a cantorus, is shown in figure 10. The 
parameter values for this flow are y = 100 and x = &. After 25 iterations (or basic 
cells; figure lob) the circle has been stretched around the three lower islands 
apparent in the corresponding Poincare‘ section (figure 2 f )  but no particles have 
escaped from this immediate area. After 50 iterations (figure 1Oc) a handful of 
particles have leaked through the cantorus. After 100 iterations (figure 10d) several 
hundred particles have escaped. 

The presence of a cantorus is easily visualized when the initial positions and 
iterates of a particle are colour-coded. In figure 11 (plate 1 )  a single red particle is 
placed initially inside the cantorus shown in figure 10, and a pale blue particle is 
placed outside the cantorus. Both particles are iterated 2000 times and the iterates 
are coloured the same as the initial position. Eventually the red particle escapes; 
however, the blue particle has not penetrated the cantorus. (Clearly such effects are 

12-2  
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FIGURE 10. Transient stirring of a circular blob placed within a cantorus for x = in, y = 100. 
(a) Initial positions; (b) after 25 basic cells; (c) 50; ( d )  100. 

obscured in PoincarB sections such as figure 2.) The cantorus is a t  the border between 
the region of predominately red dots and the region composed'of a mixture of red and 
blue dots in figure 11. 

A related transport feature is illustrated in figure 12(a, b )  (plate 1). Here we are 
concerned with transport of particles from the interior of the pipe volume to the wall 
region, a crucial feature for applications in heat and mass transfer. We have used a 
technique pursued elsewhere (Aref et al. 1989) in which positions in the domain are 
colour-coded according to the time it takes a particle starting there to reach a 
specified target region, in this case a strip of thickness one-tenth the radius near the 
pipe wall. Figure 12 (a)  shows the intuitively obvious results for integrable advection 
in the torus geometry. The only particles to reach the wall at all are located within 
the streamline pattern formed by that particular streamline which passes within a 
distance of O.la of the wall. 

For a non-integrable case, on the other hand, these rigid barriers are broken and 
many more initial locations of particles now lead to transport to the wall region. This 
is illustrated in figure 12(b). The black region (particles that take a very long time 
to reach the wall, and probably never make it) is much smaller and has a highly 
convoluted, probably fractal boundary. 

The intuitive message from figure 12 is that chaotic transverse advection leads to 
enhanced transport to the wall region, and this is amplified by figure 13 which 
provides histograms of the number of particles arriving in the wall region as a 
function of time for the two cases. For figure 12 (a ) ,  the integrable case, one sweep of 
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FIGURE 11. Poincari section indicating position 
of a cantorus for x=%n, y=lOO. 

FIGURE 15. Streamline or particle path (white) in 
the chaotic region for x= %n, y=250. 

JONES, THOMAS & AREF 

Plate 1 

FIGURE 12. Time of arrival in the wall region for 
particle initial positions in the cross-section: (a) 
integrable case, y=200, x=O; (b) non-integrable 
case, y=200, x=%n.  The colour coding is such 
that short arrival times are deep red, with longer 
times in the orange, yellow and white. Particle 
positions that never make it to the wall region are 
coloured black. 

(Facing p .  350) 
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FIGURE 14. (a) Poincari section for x=%n, y=200. (b) Streamlines or particle paths with same parameter 
values as (a). Streamlines are colour-coded to correspond to the iterates in the PoincarC section. (c) 
PoincarC section for x=  Yin, y=100. (d) Streamlines or particle paths corresponding to (c). (e) PoincarC 
section for ,y=%n, y=100. v) Streamlines or particle paths corresponding to (e). 

JONES, THOMAS & AREF 
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Time Time 

FIQURE 13. Histograms of number of particles arriving in the wall region as a function of time 
for the two cases shown in figure 12. 

finite duration accounts for all the transport. For figure 12(b), on the other hand, 
many more particles ultimately arrive a t  the wall, and there is a long time tail in the 
distribution. We believe that these simple calculations show that chaotic advection 
is an essential control mechanism for enhancing transport to the wall region, This is 
very important in a variety of applications. 

3.6. Three-dimensional structure and longitudinal dispersion 
Thus far we have examined the chaotic advection of particles in the cross-sectional 
plane, i.e. we have largely been dealing with the two-dimensional system in (7). 
However, the flow considered is three-dimensional and manifestations of chaotic 
behaviour should be apparent in the longitudinal dispersiont of advected particles as 
well. To get an impression of the three-dimensionality of the motion we first present 
corresponding pictures of Poincare’ sections and of streamlines of the flow using a 
‘periodic basic cell’. To facilitate the comparison we have colour-coded the 
streamlines to  correspond with the iterates in the Poincar6 section. Figure 14(a-f) 
(plate 2) give examples of such Poincare’ section-streamline pairs. In  these figures we 
have drawn only streamlines corresponding to regular motion. For such cases, a net- 
like structure of streamlines densely covers the surface of a streamtube (figure 14b, 
d , f ) .  On the other hand for a streamline or pathline in the chaotic region, as shown 
in figure 15 (plate i), an erratic pattern emerges. Within each curved section the 
streamlines in both chaotic and regular regions are, of course, smooth. I n  regular 
regions, however, the streamlines wind around the streamtube in a regular helical 
motion, while in chaotic regions the motion from cell to cell appears uncorrelated. We 
also draw attention to the intertwined tubes arising from periodic points in the 
Poincare’ section. For example, in figure 14 ( b )  we see the intertwining of three yellow 
and three blue tubes associated with the two sets of period-3 points in the section. 
In  figure 14(d) a similar effect is seen for the three white tubes associated with the 
period-3 point. These tubes of flow suggest that it is possible to inject fluid in a 

t We use the word ‘dispersion ’ for the rapid separation of neighbouring tracer particles. This 
includes the conventional use of the word for the growth rate of the variance in a diffusion process, 
but applies also to cases of ‘anomalous diffusion’ as one observes in systems of the present kind. 
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twisted tube in such a way that i t  does not become mixed with the ambient fluid, and 
travels down the pipe in its own well-defined channel. Results of this type may be 
useful for considerations regarding drug delivery by injection. 

The subject of longitudinal dispersion of a scalar in pipe flow has received 
considerable attention since the seminal analysis by Taylor (1953). In  his analysis 
Taylor demonstrated, within certain assumptions, that the longitudinal dispersion of 
a diffusing scalar obeys a diffusion equation in a reference frame moving with the 
mean axial velocity. The effective diffusion coefficient for this longitudinal dispersion 
is inversely related to the transverse diffusivity. We do not, of course, have any 
diffusion in our problem. However, as we have seen, the possibility of chaotic motion 
may be likened to a diffusion process, and this suggests that we look a t  the 
longitudinal distribution of particles in our model twisted pipe flow. This problem is 
considered further by Jones & Young (1989). 

In the case of a diffusing, advected scalar the effect of the secondary flow has been 
found to reduce the longitudinal dispersion (Erdogan & Chatwin 1967; Nunge, Lin 
& Gill 1972; Janssen 1976; Johnson & Kamm 1986). These results, however, all 
pertain to the case of integrable transverse motion. Here we show that considerable 
longitudinal dispersion of a non-diffusing scalar can be produced by the coupling 
between a chaotic transverse flow and the longitudinal flow. To illustrate this 10000 
particles, numbered sequentially, are positioned along a diameter of the pipe. The 
diameter is chosen as the axis of symmetry of the corresponding Poincark section (cf. 
figure 2) .  Each particle index uniquely labels the Lagrangian initial coordinate. 
Equation (5) is now integrated for a fixed amount of time and the final longitudinal 
position (i.e. value of the angle 8)  of each particle is plotted versus its index. The 
results of such calculations are shown in figure 16 for six different choices of y and 
x. At early times (the lowest curve in each panel of figure 16) we see smooth curves 
with the entire longitudinal dispersion being due to the difference in velocity a t  the 
pipe centre and the boundary. At later times, however, increasing structure is visible 
in the graphs plotted. We now see collections of particles that show little longitudinal 
dispersion interrupted by particles that show considerable longitudinal dispersion, 
and adjacent particles have dramatically different final longitudinal positions. The 
data in these plots appear similar to data from chaotic scattering problems (cf. Noid, 
Gray & Rice 1986; Eckhardt 1988). 

By comparing figure 16(a-c) to  figure 2(d, f ,  h)  we see that the smoothly varying 
parts of the graphs in figure 16 correlate with the regular islands of the corresponding 
Poincar6 sections. The interpretation of this observation is that the particles within 
an island of the Poincare' section participate in a regular winding motion in the 
transverse plane. As we saw in figure 14(b, d ,  f )  they wind along the pipe in a regular, 
quasi-periodic fashion. Hence, they 'all make much the same progress along the pipe 
in a given interval of time. In  this sense their fate is similar to the trivial problem of 
non-diffusive advection in Poiseuille flow in a straight pipe. In the chaotic regime, on 
the other hand, particles sample many different longitudinal velocities as they go 
from segment to segment along the pipe. Figure 15 provided a view of the trajectory 
of such particles. Furthermore, particles started very close to one another will have 
substantially different longitudinal velocity histories because their sampling of 
transverse positions will show a sensitive dependence on initial position. Thus, 
particles in these regions will show considerable longitudinal dispersion as is clearly 
seen in figure 16(a, b,  d-f ). Figure 16(c) corresponds to the predominantly regular 
Poincark section in figure 2 ( h ) .  Chaotic transverse motion, therefore, can lead to 
enhanced longitudinal dispersion relative to the integrable case. This is an intriguing 
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result because in a first approximation chaotic motion is sometimes modelled as a 
diffusion process (Lichtenberg & Lieberman 1983) and so we have a deterministic 
analogue of Taylor's shear dispersion mechanism. (The full elucidation of this 
interesting phenomenon requires considerable additional work, and we must refer 
the reader to the sequel paper by Jones & Young 1989.) 

The fractal structure seen in figure 16, similar to the scattering data of non- 
integrable scattering problems, has implications for residence time distributions in 
chaotically advecting flows and suggests a new area of application for chaotic 
scattering or 'chattering' as it is called (cf. Eckhardt 1988). 

4. Conclusion 
We have suggested via a parametric study of advection by certain model flows 

that chaotic stirring of particles will take place for laminar flow in a twisted pipe. The 
flow model that we have used contains several approximations that are difficult to 
assess. We look forward to the problem being addressed experimentally in the near 
future . 

The practical implication of chaotic particle trajectories is that they enhance 
stirring quality. This enhancement of stirring quality is achieved without requiring 
any additional energy input to the system, or any additional expenditure of force. 
This is because the transition from integrable to chaotic particle motion is a 
kinematical effect, fundamentally different in nature from the transition from 
laminar to turbulent flow. The latter in general does require an increase in the 
amount of energy used to agitate the fluid. In  the example discussed here we show 
how the transition from regular to chaotic particle motion can be achieved by 
modifying only the geometry of our pipe. The stirring is always achieved by a 
laminar flow, and the subtle changes in geometry should not require an increase in 
the overall pressure drop required to drive the fluid through the pipe. (In the model 
the geometry can, of course, be changed independently of the pressure drop.) An 
appropriately designed twisted pipe provides an intriguing example of an efficient 
fluid stirring device without moving parts. It differs from the static mixers in that 
it utilizes fluid inertia to set up the secondary flow. 

Although the approximations inherent in our description of the flow disqualify us 
from precise quantitative statements, our results do give qualitative guidelines on 
how to 'tune ' the geometry of a real pipe for maximum stirring efficiency. Consider 
first the pitch angle x. As mentioned previously, for x = 0" and x = 180" the flow is 
regular and material lines are stretched at a rate that is linear in time. However, 
small deviations from x = 0" apparently have a more profound impact on stirring 
than a comparable deviation from x = 180" for a given value of y (see figure 2 and 
compare x = in to  x = $). The efficiency of devices such as heat exchangers and 
blood oxygenators relies on scalar transport to  the pipe boundary. This is enhanced 
by stirring in the boundary region. Thus, the chaotic behaviour for x near 0" is more 
beneficial to the efficient operation of such devices than that for x near 180". 

Our results suggest that transverse transport is enhanced when condition (1  7) is 
met. This should translate into greater heat exchange between the fluid in the pipe 
and the ambient. Thus, it should be possible to lead fluid through two twisted pipe 
flows in a bath of a fixed temperature and obtain different degrees of cooling (or 
heating) a t  the outlet for fixed value of y ,  simply by constructing the two pipes with 
different values of x ! 

We have only presented results from the simple basic cell composed of two 
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segments (figure 1). We have also studied a four-segment basic cell given by the 

A = T-lMT-lMTMTM, 
mapping 

although not in as much detail as the two-segment case. It appears from this 
preliminary study that, as the geometry of the basic cell becomes more complex, 
chaotic particle trajectories are more easily generated. Obviously, many more 
modifications to the pipe geometry are possible. We are satisfied that even with the 
simplest geometry we have captured the essential features necessary to produce 
efficient stirring in this steady, three-dimensional, laminar flow. 

This work was supported by DARPA/URI grant N00014-86-K-0758 administered 
by ONR, by NSF/PYI award MSM84-51107, and by IGPP/LANL grant 88-16-215. 
Computer resources provided at the San Dicgo Supercomputer Center wcre 
invaluable. 

Appendix 

y = r cos q5, we obtain the polar coordinate versions of (7)  : 
We show how to arrive a t  (9) for the scaled radial coordinate. From (7), x = r sin q5, 

- dr  = -(1-r2)(4-r2)sinq5, Y 
dt’ 1152 

(A 2) 
dq5 Y r- = -{( 1 - r 2 )  (4 - r2)  -6r2(3 - r 2 ) }  cos q5. 
dt’ 1152 

We wish to introduce R(r) such that 

(A 3) 

Let us seek a ‘stream function ’ @(R, q5) = - (y/l152)P(R) cosq5 such that 

(A 4) 
d~ 1 a@ dq5 a+ - . R - = - -  
d 8 - R q ’  dt’ aR. 

Then by the chain rule dR/dt’ = R‘dr/dB, where R‘ is dR/dr, and using (A l) ,  (A 2) 
we obtain two relations for F: 

F(R) = RR’(l-r2)(4-r2), (A 5a)  

(A 5 b )  
d F R  
- = -{( 1 - r 2 )  (4 - r 2 )  - 6r2(3 - r 2 ) } .  
d R r  

2r dF 
(1 - r 2 )  (4-r2) - 6r2(3-r2)’ 

- - 2F dr 
d(R2) = (1 - r 2 )  (4 - r 2 )  These give 

From the last two of these F ( r )  may be found, and then R(r) is determined. We shall 
not give the tedious intermediate calculations but simply state the results : 

F(r )  = r(1 -r2)2(4-r2), 

R(r) = r(1 - i r2 ) i .  
(A 7) 

(A 8) 
The reader may easily verify that (A 4) is satisfied. 
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